亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Sentinel-2與時(shí)序Sentinel-1 SAR特征的贛南柑橘種植區(qū)識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

教育部產(chǎn)學(xué)研協(xié)同育人項(xiàng)目(202102245015)和江西省高校人文社科研究項(xiàng)目(JC21123)


Identification of Gannan Citrus Planting Area Based on Sentinel-2 and Temporal Sentinel-1 SAR Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為準(zhǔn)確獲取柑橘果園空間分布信息,實(shí)現(xiàn)柑橘種植結(jié)構(gòu)調(diào)整、產(chǎn)量估算和資源管理,以贛南3個(gè)柑橘種植主產(chǎn)區(qū)(信豐縣、安遠(yuǎn)縣及尋烏縣)為研究區(qū)域,針對南方地區(qū)多云多雨導(dǎo)致傳統(tǒng)光學(xué)影像較為缺乏的問題,使用Sentinel系列數(shù)據(jù)和PIE-Engine平臺,構(gòu)建和優(yōu)選了光譜特征、植被水體指數(shù)特征、紅邊波段特征和紋理特征,并引入時(shí)間序列Sentinel-1合成孔徑雷達(dá)(SAR)數(shù)據(jù)的后向散射系數(shù),共同探討不同特征組合對柑橘種植園的識別提取效果,基于隨機(jī)森林算法并融合Sentinel-2與時(shí)序Sentinel-1 SAR特征識別提取了贛南柑橘種植區(qū)。結(jié)果表明:5、9、11月柑橘種植園與其他地物的平均后向散射系數(shù)分離性最佳,是識別提取柑橘的關(guān)鍵時(shí)期;指數(shù)特征及紋理特征參與分類改善了分類效果且提高了分類精度;相較于單一SAR特征及指數(shù)、紋理特征,加入時(shí)序SAR特征的分類結(jié)果中總體精度達(dá)90.084%,Kappa系數(shù)達(dá)0.863,錯(cuò)分、漏分誤差較小,符合實(shí)際地物分布情況,說明了時(shí)序SAR特征的可用性和實(shí)用性。本研究可為多云多雨的南方柑橘果園的識別提取提供參考。

    Abstract:

    In order to accurately obtain spatial distribution information of citrus orchards and achieve adjustments in citrus cultivation structure, yield estimation, and resource management, focusing on three main citrus-producing regions in southern Jiangxi: Xinfeng County, Anyuan County, and Xunwu County, in addressing the challenge posed by frequent cloud cover and rainfall in the southern region, resulting in a scarcity of traditional optical images, Sentinel series data and the PIE-Engine platform were employed. Spectral features, vegetation water body index features, red edge band features, and texture 〖JP3〗features were constructed and optimized. Furthermore, the backscatter coefficients of time-series Sentinel-1 synthetic aperture radar (SAR) data were incorporated to collectively explore the recognition and extraction effects of different feature combinations on citrus plantations. Based on the random forest algorithm and the fusion of Sentinel-2 and temporal Sentinel-1 SAR feature recognition, the citrus planting area in Gannan was extracted. The results indicated that the average backscatter coefficient separation between citrus plantations and other ground features was most pronounced in May, September, and November, which were the critical periods for citrus identification and extraction. The involvement of index features and texture features in classification proved advantageous for classification effectiveness and enhanced classification accuracy. In comparison with single SAR features, as well as index and texture features, the overall accuracy of the classification results with the inclusion of temporal SAR features was 90.084%, with Kappa coefficient of 0.863. misclassification and leakage errors were relatively small, aligning with the actual distribution of land objects, signifying the availability and practicality of temporal SAR features. The research result can provide reference for the identification and extraction of citrus orchards in the cloudy and rainy southern regions, and it had certain application potential.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

唐琪,李恒凱,周艷兵,王秀麗.基于Sentinel-2與時(shí)序Sentinel-1 SAR特征的贛南柑橘種植區(qū)識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(3):193-202. TANG Qi, LI Hengkai, ZHOU Yanbing, WANG Xiuli. Identification of Gannan Citrus Planting Area Based on Sentinel-2 and Temporal Sentinel-1 SAR Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):193-202.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-12
  • 出版日期: