亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Swin Transformer與GRU的低溫貯藏番茄成熟度識別與時序預(yù)測研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2023YFD2001302、2022YFD2001804)和北京市農(nóng)林科學(xué)院科研創(chuàng)新平臺建設(shè)項目(PT2023-24)


Low Temperature Storage Tomato Maturity Recognition and Time Series Prediction Based on Swin Transformer-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    面向綠熟番茄采后持續(xù)轉(zhuǎn)熟特征,適時調(diào)溫是滿足不同成熟度番茄適宜貯運溫度需求的關(guān)鍵,而果實成熟度自動識別與動態(tài)預(yù)測則是實現(xiàn)溫度適時調(diào)控的基礎(chǔ)條件。本文基于Swin Transformer與改進(jìn)GRU提出了一種番茄成熟度識別與時序動態(tài)預(yù)測模型,首先通過融合番茄兩側(cè)圖像獲取番茄表觀全局紅色總占比,構(gòu)建不同成熟番茄圖像數(shù)據(jù)集,并基于遷移學(xué)習(xí)優(yōu)化Swin Transformer模型初始權(quán)重配置,實現(xiàn)番茄成熟度分類識別;其次,周期性采集不同儲藏溫度(4、9、14℃)下番茄圖像數(shù)據(jù),結(jié)合番茄初始顏色特征與貯藏環(huán)境信息,構(gòu)建基于Swin Transformer與GRU的番茄成熟度時序預(yù)測模型,并融合時間注意力模塊優(yōu)化模型預(yù)測精度;最后,對比分析不同模型預(yù)測結(jié)果,驗證本研究所提模型的準(zhǔn)確性與優(yōu)越性。結(jié)果表明,番茄成熟度正確識別率為95.783%,相比VGG16、AlexNet、ResNet50模型,模型正確識別率分別提升2.83%、3.35%、12.34%。番茄成熟度時序預(yù)測均方誤差(MSE)為0.225,相比原始GRU、LSTM、BiGRU模型MSE最高降低29.46%。本研究為兼顧番茄成熟度實現(xiàn)貯藏溫度柔性適時調(diào)控提供了關(guān)鍵理論基礎(chǔ)。

    Abstract:

    Targeting the continuous ripening process of green mature tomatoes after harvest, timely temperature adjustment plays a pivotal role in meeting the appropriate storage and transportation temperature requirements for tomatoes at different stages of ripeness. Meanwhile, automatic recognition and dynamic prediction of fruit ripeness serve as fundamental prerequisites for achieving temperature control at the right time. A tomato ripeness recognition and temporal dynamic prediction model was proposed based on Swin Transformer and improved GRU. Firstly, by fusing the images of both sides of tomatoes, the overall redness proportion as a visual feature was obtained and a dataset of tomato images at different ripeness stages was constructed. Through transfer learning, the initial weight configuration of the Swin Transformer model was optimized to achieve tomato ripeness classification. Secondly, tomato image data at different storage temperatures (4℃, 9℃ and 14℃) was periodically collected, and the initial color features of tomatoes were combined with storage environment information to build a tomato ripeness temporal prediction model based on Swin Transformer and GRU. Furthermore, a time attention module was incorporated to enhance the prediction accuracy of the model. Lastly, the prediction results of different models were compared and analyzed to validate the accuracy and superiority of the proposed model. The results demonstrated a correct recognition rate of 95.783% for tomato ripeness classification, with respective improvements of 2.83%, 3.35%, and 12.34% compared with that of the VGG16, AlexNet, and ResNet50 models. The mean square error (MSE) for tomato ripeness temporal prediction was 0.225, representing a maximum reduction of 29.46% compared with that of the original GRU, LSTM, and BiGRU models. The research result can provide a key theoretical basis for the flexible and timely regulation of storage temperature considering tomato maturity.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊信廷,劉彤,韓佳偉,郭向陽,楊霖.基于Swin Transformer與GRU的低溫貯藏番茄成熟度識別與時序預(yù)測研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(3):213-220. YANG Xinting, LIU Tong, HAN Jiawei, GUO Xiangyang, YANG Lin. Low Temperature Storage Tomato Maturity Recognition and Time Series Prediction Based on Swin Transformer-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):213-220.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-19
  • 出版日期: