亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進LSTM的蘑菇生長狀態(tài)時空預測算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

上海市科技計劃項目(21N21900600)、上海市科技興農項目(2019-02-08-00-10-F01123)和山東省重點研發(fā)計劃(重大科技創(chuàng)新工程)項目(2022CXGC010609)


Spatiotemporal Prediction Algorithm for Mushroom Growth Status Based on Improved LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    密集蘑菇簇會嚴重影響蘑菇質量和自動采摘成功率。為避免形成超密集蘑菇簇,提出一種蘑菇生長狀態(tài)時空預測算法,對蘑菇生長狀態(tài)進行預測以指導提前疏蕾。該算法采用編碼器-預測器框架,將歷史序列圖像轉換為3D張量序列作為模型的輸入;編碼器網絡中將卷積和長短時記憶(Long short term memory,LSTM)網絡融合實現(xiàn)對蘑菇生長的時空相關性特征的提??;在預測網絡中加入擴散模型以解決預測圖像的模糊問題;此外,在損失函數(shù)中增加了蘑菇面積差異損失函數(shù)來進一步減小預測蘑菇與實際蘑菇的形狀和位置偏差。實驗結果表明,本文算法峰值信噪比可達35.611dB、多層級結構相似性為 0.927、蘑菇預測準確性高達0.93,有效提高了蘑菇生長狀態(tài)圖像預測質量和精度,為食用菌生長預測提供了一種新思路。

    Abstract:

    Dense mushroom clusters can significantly impact mushroom quality and the success rate of automated harvesting. To address this issue,a spatiotemporal prediction algorithm for mushroom growth status based on historical time series growth images was proposed,which can facilitate early bud thinning to prevent the formation of dense mushroom clusters. The algorithm employed a sequence-to-sequence structure, comprising an encoder and a predictor. In the input, historical image sequences were transformed into 3D tensor sequences and sent to encoder. Within the encoder network, a three-layer long short term memory (LSTM) model was utilized. Here, convolution was fused into LSTM cell to extract spatiotemporal correlation features of mushroom growth. Meanwhile, a diffusion model was introduced into the predictor to address the blurriness issue in predicting images. Furthermore, a mushroom area difference loss function was designed and incorporated into the loss function to further reduce the shape and positional deviations between the predicted and actual mushrooms. The experimental results indicated that the proposed spatiotemporal prediction algorithm for mushroom growth status achieved a peak signal-to-noise ratio of 35.611dB, a multiscale structure similarity of 0.927, and a high mushroom mean intersection over union of 0.93, which represented improvements of 36%, 33% and 24%, respectively, over that of the ConvLSTM(Converlution LSTM)spatiotemporal prediction algorithm. This showed the proposed algorithm can effectively enhance the quality and accuracy of mushroom growth status image prediction, providing a approach for precise forecasting of edible mushroom growth.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊淑珍,黃杰,苑進.基于改進LSTM的蘑菇生長狀態(tài)時空預測算法[J].農業(yè)機械學報,2024,55(3):221-230. YANG Shuzhen, HUANG Jie, YUAN Jin. Spatiotemporal Prediction Algorithm for Mushroom Growth Status Based on Improved LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):221-230.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-01-03
  • 出版日期: