亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v7輕量化模型的自然果園環(huán)境下蘋果識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省重點(diǎn)研發(fā)計劃項目(BE2017370)和國家自然科學(xué)基金項目(31471419)


Lightweight Apple Recognition Method in Natural Orchard Environment Based on Improved YOLO v7 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對自然果園環(huán)境下蘋果果實(shí)識別中,傳統(tǒng)的目標(biāo)檢測算法往往很難在檢測模型的檢測精度、速度和輕量化方面實(shí)現(xiàn)平衡,提出了一種基于改進(jìn)YOLO v7的輕量化蘋果檢測模型。首先,引入部分卷積(Partial convolution,PConv)替換多分支堆疊模塊中的部分常規(guī)卷積進(jìn)行輕量化改進(jìn),以降低模型的參數(shù)量和計算量;其次,添加輕量化的高效通道注意力(Efficient channel attention,ECA)模塊以提高網(wǎng)絡(luò)的特征提取能力,改善復(fù)雜環(huán)境下遮擋目標(biāo)的錯檢漏檢問題;在模型訓(xùn)練過程中采用基于麻雀搜索算法(Sparrow search algorithm,SSA)的學(xué)習(xí)率優(yōu)化策略來進(jìn)一步提高模型的檢測精度。試驗(yàn)結(jié)果顯示:相比于YOLO v7原始模型,改進(jìn)后模型的精確率、召回率和平均精度分別提高4.15、0.38、1.39個百分點(diǎn),其參數(shù)量和計算量分別降低22.93%和27.41%,在GPU和CPU上檢測單幅圖像的平均用時分別減少0.003s和0.014s。結(jié)果表明,改進(jìn)后的模型可以實(shí)時準(zhǔn)確地識別復(fù)雜果園環(huán)境中的蘋果,模型參數(shù)量和計算量較小,適合部署于蘋果采摘機(jī)器人的嵌入式設(shè)備上,為實(shí)現(xiàn)蘋果的無人化智能采摘奠定了基礎(chǔ)。

    Abstract:

    In the task of apple recognition in natural orchard environments, it is difficult for traditional object detection algorithms to achieve a balance between the accuracy, speed, and lightweight of the detection model. Therefore, a lightweight apple detection model based on improved YOLO v7 model was proposed. Firstly, partial convolution (PConv) was introduced in the multi branch stacking module to replace regular convolution, in order to reduce the parameter and computation of the model. Then a lightweight efficient channel attention (ECA) module was introduced to enhance the feature extraction ability and improve the problem of false and missed detection of occluded targets in complex environments. Finally, a learning rate optimization strategy based on sparrow search algorithm (SSA) was adopted in model training to further increase the detection accuracy of the model. The experimental results showed that compared with the original YOLO v7 model, the precision, recall, and average accuracy of the improved model was raised by 4.15 percentage points, 0.38 percentage points and 1.39 percentage points respectively; the number of parameters and computations were decreased by 2293% and 27.41%, respectively; and the average time to detect each image under GPU and CPU was decreased by 0.003s and 0.014s, respectively. The results indicated that the improved model can quickly and accurately detect apple fruits in natural orchard environments, and the number of parameters and computations were less, which was suitable to be deployed on the embedded devices of apple harvesting robots, and laying the foundation for unmanned intelligent apple picking.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張震,周俊,江自真,韓宏琪.基于改進(jìn)YOLO v7輕量化模型的自然果園環(huán)境下蘋果識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(3):231-242. ZHANG Zhen, ZHOU Jun, JIANG Zizhen, HAN Hongqi. Lightweight Apple Recognition Method in Natural Orchard Environment Based on Improved YOLO v7 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):231-242.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-21
  • 出版日期: