亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v5的復(fù)雜環(huán)境下花椒簇識(shí)別與定位方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

現(xiàn)代絲路寒旱農(nóng)業(yè)發(fā)展資金項(xiàng)目(njyf2022-10)和國家自然科學(xué)基金項(xiàng)目(51965037)


Recognition and Localization Method for Pepper Clusters in Complex Environments Based on Improved YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    花椒樹產(chǎn)果量大,枝干縱橫交錯(cuò),樹葉茂密,給花椒的自動(dòng)化采摘帶來了困難。因此,本文設(shè)計(jì)一種基于改進(jìn)YOLO v5的復(fù)雜環(huán)境下花椒簇的快速識(shí)別與定位方法。通過在主干提取網(wǎng)絡(luò)CSPDarknet的CSPLayer層和Neck的上采樣之后增加高效通道注意力ECA(Efficient channel attention)來簡(jiǎn)化CSPLayer層的計(jì)算量,提升了特征提取能力。同時(shí)在下采樣層增加協(xié)同注意力機(jī)制CA(Coordinate attention),減少下采樣過程中信息的損失,強(qiáng)化特征空間信息,配合熱力圖(Grad-CAM)和點(diǎn)云深度圖,來完成花椒簇的空間定位。測(cè)試結(jié)果表明,與原YOLO v5相比較,改進(jìn)的網(wǎng)絡(luò)將殘差計(jì)算減少至1次,保證了模型輕量化,提升了效率。同幀數(shù)區(qū)間下,改進(jìn)后的網(wǎng)絡(luò)精度為96.27%,對(duì)比3個(gè)同類特征提取網(wǎng)絡(luò)YOLO v5、YOLO v5-tiny、Faster R-CNN,改進(jìn)后網(wǎng)絡(luò)精確度P分別提升5.37、3.35、15.37個(gè)百分點(diǎn),連株花椒簇的分離識(shí)別能力也有較大提升。實(shí)驗(yàn)結(jié)果表明,自然環(huán)境下系統(tǒng)平均識(shí)別率為81.60%、漏檢率為18.39%,能夠滿足花椒簇識(shí)別要求,為移動(dòng)端部署創(chuàng)造了條件。

    Abstract:

    Pepper trees yield is a substantial quantity of fruits, characterized by crisscrossed branches and dense foliage, resulting insignificant challenges for automated peppercorn picking. Therefore, a fast identification and localization method of pepper clusters in complex environment based on improved YOLO v5 was proposed. By adding efficient channel attention (ECA) after the CSPLayer of the backbone extraction network CSPDarknet and the upsampling layer of Neck to simplify the computation of the CSPLayer layer and improve the feature extraction capability. In the downsampling layer, coordinate attention (CA) was added to reduce the loss of information in the downsampling process, strengthen the spatial information of features, and cooperate with the heat map (Grad-CAM) and the depth map of the point cloud to complete the spatial localization of pepper clusters. The test results showed that the improved network over the original YOLO v5 reduced the residual computation to 1 time, which ensured the model was lightweight and the efficiency was improved. Under the same frame number interval, the accuracy of the improved network was 96.27%, comparing with three similar feature extraction networks YOLO v5, YOLO v5-tiny, and Faster R-CNN, the precision of the improved network was improved by 5.37 percentage points, 3.35 percentage points, and 15.37 percentage points, respectively, and the ability of separating and recognizing the pepper clusters of the successive plants was greatly improved. The experimental results showed that the average checking accuracy of the system in the natural environment was 81.60%, and the leakage rate was 18.39%, which can satisfy the pepper cluster recognition, and build the foundation for mobile deployment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃華,張昊,胡曉林,聶興毅.基于改進(jìn)YOLO v5的復(fù)雜環(huán)境下花椒簇識(shí)別與定位方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(3):243-251. HUANG Hua, ZHANG Hao, HU Xiaolin, NIE Xingyi. Recognition and Localization Method for Pepper Clusters in Complex Environments Based on Improved YOLO v5[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):243-251.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-13
  • 出版日期: