亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SimAM-ConvNeXt-FL的茶葉病害小樣本分類(lèi)方法研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61672032)


Small Sample Classification of Tea Diseases Based on SimAM-ConvNeXt-FL
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)茶葉病害精準(zhǔn)分類(lèi),針對(duì)茶葉病害圖像分類(lèi)中小樣本問(wèn)題及類(lèi)別分布不均的問(wèn)題,提出了一種基于遷移學(xué)習(xí)的SimAM-ConvNeXt-FL模型的病害圖像分類(lèi)方法。首先在ConvNeXt模型中加入SimAM模塊,以加強(qiáng)復(fù)雜特征的提取。其次針對(duì)樣本分布不均問(wèn)題,將Focal Loss函數(shù)作為訓(xùn)練過(guò)程中的損失函數(shù),通過(guò)增加數(shù)量較少樣本的權(quán)重來(lái)減小樣本分布不均的影響。最后使用SimAM-ConvNeXt-FL模型對(duì)Plant Village數(shù)據(jù)集訓(xùn)練,將訓(xùn)練得到的參數(shù)遷移到實(shí)測(cè)的茶葉病害圖像上并進(jìn)行微調(diào),減少過(guò)擬合帶來(lái)的影響,設(shè)置消融實(shí)驗(yàn)證明模型改進(jìn)的有效性,并與不同分類(lèi)模型(AlexNet、VGG16、ResNet34模型)分別進(jìn)行對(duì)比實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,SimAM-ConvNeXt-FL模型識(shí)別效果最佳,準(zhǔn)確率達(dá)96.48%, SimAM-ConvNeXt-FL模型較原ConvNeXt模型在茶煤病、茶藻斑病、茶炭疽病、健康葉片和茶白星病的F1值分別提高4.46、3.76、0.43、0.22、5.23個(gè)百分點(diǎn)。結(jié)果表明本文提出的模型具有較高的分類(lèi)準(zhǔn)確率與較強(qiáng)的泛化性,可推進(jìn)茶葉病害分類(lèi)工作發(fā)展。

    Abstract:

    In order to realize accurate classification of tea diseases, a disease image classification method based on SimAM-ConvNeXt-FL model of migration learning was proposed to address the small sample problem and uneven distribution of categories in tea disease image classification. Firstly, an SimAM module was added to the ConvNeXt model to enhance the extraction of complex features. Secondly, to address the problem of uneven sample distribution, the Focal Loss function was used as the loss function in the training process, and the effect of uneven sample distribution was reduced by increasing the weights of a smaller number of samples. Finally, the SimAM-ConvNeXt-FL model was used to train the Plant Village dataset, and the parameters obtained from the training were migrated to the measured tea leaf disease images and fine-tuned to reduce the impact of overfitting, and ablation experiments were set up to prove the validity of the model improvement, and comparison experiments were carried out with the different classification models AlexNet, VGG16, and ResNet34 models comparison experiments were conducted respectively. The experimental results showed that the SimAM-ConvNeXt-FL model had the best recognition effect, with an accuracy of 9648%, and the F1 values of the SimAM-ConvNeXt-FL model compared with the original ConvNeXt model for tea coal disease, tea phoma, tea anthracnose, healthy leaves, and tea white star disease were improved by 4.46 percentage points, 3.76 percentage points, 0.43 percentage points, 0.22 percentage points, and 5.23 percentage points respectively. The results showed that the model proposed had high classification accuracy and strong generalizability, which can promote the development of tea disease classification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

田甜,程志友,鞠薇,張帥.基于SimAM-ConvNeXt-FL的茶葉病害小樣本分類(lèi)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(3):275-281. TIAN Tian, CHENG Zhiyou, JU Wei, ZHANG Shuai. Small Sample Classification of Tea Diseases Based on SimAM-ConvNeXt-FL[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):275-281.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-01
  • 出版日期: