亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于模型預(yù)測(cè)控制的菇房空調(diào)節(jié)能控制方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家食用菌產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-20)和北京市食用菌創(chuàng)新團(tuán)隊(duì)項(xiàng)目(BAIC03-2023)


Energy-saving Control Method of Air Conditioning in Mushroom HouseBased on Model Predictive Control
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    當(dāng)前工廠化食用菌生產(chǎn)菇房空調(diào)控制方法存在節(jié)能效率低、室內(nèi)溫度波動(dòng)大等問題,提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network, CNN)、門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)(Gated recurrent unit neural network, GRU)與注意力機(jī)制(Attention)的菇房空調(diào)節(jié)能控制方法。該方法以CNN-GRU-Attention組合神經(jīng)網(wǎng)絡(luò)為預(yù)測(cè)模型,結(jié)合預(yù)測(cè)誤差補(bǔ)償和預(yù)測(cè)模型數(shù)據(jù)集動(dòng)態(tài)更新機(jī)制,實(shí)現(xiàn)對(duì)菇房室內(nèi)溫度精準(zhǔn)預(yù)測(cè);建立以空調(diào)控制量為狀態(tài)量的目標(biāo)函數(shù),分別利用熵權(quán)法、主觀法明確目標(biāo)函數(shù)權(quán)重系數(shù),運(yùn)用帶精英策略的快速非支配排序遺傳算法(Non-dominated-sorting genetic algorithm Ⅱ, NSGA-Ⅱ)求解出空調(diào)在控制時(shí)域內(nèi)最優(yōu)控制序列,集成滾動(dòng)優(yōu)化和反饋機(jī)制,實(shí)現(xiàn)菇房環(huán)境的精準(zhǔn)及節(jié)能控制。試驗(yàn)結(jié)果表明,提出的CNN-GRU-Attention菇房室內(nèi)溫度預(yù)測(cè)模型,以歷史30min數(shù)據(jù)預(yù)測(cè)未來(lái)10min室內(nèi)溫度效果最好,選取的典型日內(nèi)預(yù)測(cè)最大均方根誤差為0.122℃、最小決定系數(shù)為0.807、最大平均絕對(duì)百分比誤差為0.611%;菇房空調(diào)模型預(yù)測(cè)控制方法對(duì)天氣波動(dòng)具有較好的抗干擾能力。與閾值開關(guān)法和PID法相比,在空調(diào)節(jié)能方面,能耗分別減少21%和14%;在控制溫度精度方面,RMSE可分別降低72%、46%。

    Abstract:

    At present, there are some problems such as low energy saving efficiency and large indoor temperature fluctuation in the control methods of mushroom air conditioning in factory production. An energy saving control method based on convolutional neural network (CNN), gated recurrent unit neural network (GRU) and self-attention mechanism was proposed. The CNN-GRU-Attention combined neural network was used as the prediction model, and the prediction error compensation and the dynamic updating mechanism of the prediction model data set were combined to achieve accurate prediction of indoor temperature in mushroom houses. The control quantity of air conditioning was established as the objective function of state quantity, and the weight coefficient of the objective function was defined by entropy weight method and subjective method, respectively. The optimal control sequence of air conditioning in the control time domain was solved by non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ), and the rolling optimization and feedback mechanism were integrated to realize the accurate and energy-saving control of the greenhouse environment. The experimental results showed that the CNN-GRU-Attention indoor temperature prediction model proposed in mushroom house showed that the previous 30min data had the best effect in predicting the indoor temperature in the future 10min. On a typical intra-day the maximum root mean square error of prediction accuracy was 0.122℃, the minimum coefficient of determination was 0.807, and the maximum mean absolute percentage error was 0.611%. The model predictive control method of mushroom air conditioning had a good anti-interference ability in weather fluctuation. Compared with threshold switching method and PID method, the energy consumption of air conditioning can be saved by 21% and 14%, respectively. In terms of temperature control accuracy, the root mean square error was decreased by 72% and 46%, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張馨,孔祥書,鄭文剛,王明飛,單飛飛,鮑峰.基于模型預(yù)測(cè)控制的菇房空調(diào)節(jié)能控制方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(3):352-361. ZHANG Xin, KONG Xiangshu, ZHENG Wen'gang, WANG Mingfei, SHAN Feifei, BAO Feng. Energy-saving Control Method of Air Conditioning in Mushroom HouseBased on Model Predictive Control[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):352-361.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-12
  • 出版日期: