亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

自適應(yīng)融合氣體-光譜雙模態(tài)信息花生產(chǎn)地溯源方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

吉林省科技發(fā)展計劃項目(YDZJ202301ZYTS406)和國家自然科學(xué)基金項目(31772059)


Adaptive Fusion of Gas Spectral Bimodal Information for Peanut Origin Traceability
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    不同產(chǎn)地的花生質(zhì)量差異明顯,貼優(yōu)質(zhì)產(chǎn)地標(biāo)簽販賣劣質(zhì)花生的現(xiàn)象時有發(fā)生。本文基于電子鼻與高光譜系統(tǒng)的無損檢測技術(shù),提出雙模態(tài)融合特征注意力(Bimodal fusion feature attention,DFFA)并設(shè)計DFFA-Net以實現(xiàn)花生質(zhì)量辨識。首先,利用電子鼻與高光譜系統(tǒng)獲取7個不同產(chǎn)地花生氣體信息和光譜信息,花生自內(nèi)而外的氣體信息可以表征其整體宏觀質(zhì)量,不同化學(xué)鍵及官能團(tuán)的光譜信息差異可以表征其整體微觀質(zhì)量;然后,提出DFFA以自適應(yīng)融合氣體-光譜雙模態(tài)信息并關(guān)注影響分類性能的重要特征,并結(jié)合消融實驗證明了雙模態(tài)信息融合的必要性;最后,基于提出的DFFA模塊,經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化得到DFFA-Net以實現(xiàn)不同產(chǎn)地花生質(zhì)量的有效辨識。通過消融分析、多注意力機(jī)制分類性能對比,DFFA-Net獲得了最佳分類性能:準(zhǔn)確率為98.10%、精確率為98.15%、召回率為97.88%,驗證了DFFA-Net在花生產(chǎn)地辨識中的有效性。提出的DFFA-Net結(jié)合電子鼻和高光譜系統(tǒng)實現(xiàn)了不同產(chǎn)地花生的質(zhì)量辨識,為花生市場質(zhì)量監(jiān)督提供了有效的技術(shù)方法。

    Abstract:

    The quality difference of peanuts from different origins is significant, and it is common to see inferior peanuts being sold with high-quality labels. Therefore, it is crucial to provide a peanut origin traceability method. A bimodal fusion feature attention (DFFA) was proposed based on electronic nose and hyperspectral system for non-destructive detection, and DFFA-Net was designed to achieve peanut quality identification. Firstly, the gas information and spectral information of peanuts from seven different origins were obtained by using an electronic nose and hyperspectral system. The gas information from the inside out of peanuts can characterize their overall macroscopic quality, while the spectral information differences of different chemical bonds and functional groups can characterize their overall microscopic quality. Then, DFFA was proposed to adaptively fuse the gas-spectral dual-modal information and focus on important features that affected classification performance. The necessity of fusing dual-modal information was verified through ablation experiments. Finally, based on the proposed DFFA module, DFFA-Net was designed with optimized network structure to achieve effective identification of peanut quality from different origins. Through ablation analysis and comparison of classification performance with multiple attention mechanisms, DFFA-Net achieved the best classification performance: accuracy of 98.10%, precision of 98.15%, and recall of 97.88%. The effectiveness of DFFA-Net in peanut origin identification research was validated. In conclusion, the proposed DFFA-Net, combining electronic nose and hyperspectral system, effectively realized the quality identification of peanuts from different origins and provided an effective technical method for quality supervision in the peanut market.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

石巖,任宇琪,王思遠(yuǎn),殷崇博,門洪.自適應(yīng)融合氣體-光譜雙模態(tài)信息花生產(chǎn)地溯源方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(4):176-183,203. SHI Yan, REN Yuqi, WANG Siyuan, YIN Chongbo, MEN Hong. Adaptive Fusion of Gas Spectral Bimodal Information for Peanut Origin Traceability[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):176-183,203.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期: