亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于CycleGAN-IA方法和M-ConvNext網(wǎng)絡(luò)的蘋果葉片病害圖像識(shí)別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62203344)、陜西省科技廳自然科學(xué)基礎(chǔ)研究重點(diǎn)項(xiàng)目(2022JZ-35)和國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)計(jì)劃項(xiàng)目(202210709012)


Image Recognition of Apple Leaf Disease Based on CycleGAN-IA Method and M-ConvNext Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)蘋果葉片病害圖像識(shí)別存在數(shù)據(jù)集獲取困難、樣本不足、識(shí)別準(zhǔn)確率低等問(wèn)題,提出基于多尺度特征提取的病害識(shí)別網(wǎng)絡(luò)(Multi-scale feature extraction ConvNext, M-ConvNext)模型。采用一種結(jié)合改進(jìn)的循環(huán)一致性生成對(duì)抗網(wǎng)絡(luò)與仿射變換的數(shù)據(jù)增強(qiáng)方法(Improved CycleGAN and affine transformation, CycleGAN-IA),首先,使用較小感受野的卷積核和殘差注意力模塊優(yōu)化CycleGAN網(wǎng)絡(luò)結(jié)構(gòu),使用二值交叉熵?fù)p失函數(shù)代替CycleGAN網(wǎng)絡(luò)的均方差損失函數(shù),以此生成高質(zhì)量樣本圖像,提高樣本特征復(fù)雜度;然后,對(duì)生成圖像進(jìn)行仿射變換,提高數(shù)據(jù)樣本的空間復(fù)雜度,該方法解決了數(shù)據(jù)樣本不足的問(wèn)題,用于輔助后續(xù)的病害識(shí)別模型。其次,構(gòu)建M-ConvNext網(wǎng)絡(luò),該網(wǎng)絡(luò)設(shè)計(jì)G-RFB模塊獲取并融合各個(gè)尺度的特征信息,GELU激活函數(shù)增強(qiáng)網(wǎng)絡(luò)的特征表達(dá)能力,提高蘋果葉片病害圖像識(shí)別準(zhǔn)確率。最后,實(shí)驗(yàn)結(jié)果表明,CycleGAN-IA數(shù)據(jù)增強(qiáng)方法可以對(duì)數(shù)據(jù)集起到良好的擴(kuò)充作用,在常用網(wǎng)絡(luò)上驗(yàn)證,增強(qiáng)后的數(shù)據(jù)集可以有效提高蘋果葉片病害圖像識(shí)別準(zhǔn)確率;通過(guò)消融實(shí)驗(yàn)可得,M-ConvNex識(shí)別準(zhǔn)確率可達(dá)9918%,較原ConvNext網(wǎng)絡(luò)準(zhǔn)確率提高0.41個(gè)百分點(diǎn),較ResNet50、MobileNetV3和EfficientNetV2網(wǎng)絡(luò)分別提高3.78、7.35、4.07個(gè)百分點(diǎn),為后續(xù)農(nóng)作物病害識(shí)別提供了新思路。

    Abstract:

    Aiming at the problems of difficult dataset acquisition, insufficient samples, and low recognition accuracy in apple leaf disease image recognition, a disease recognition network based on multi-scale feature extraction ConvNext (M-ConvNext) model was proposed. A data enhancement method combining improved CycleGAN and affine transformation (CycleGAN-IA) was used. Firstly, the CycleGAN network structure was optimized by using a convolutional kernel with a smaller sensory field and a residual attention module, and a binary cross-entropy loss function instead of the mean-variance loss function of CycleGAN network, in order to generate high-quality sample images and improve the complexity of sample features;then affine transformation was applied to the generated images to improve the spatial complexity of the data samples, which solved the problem of insufficient data samples, and was used to assist the subsequent disease recognition model. Secondly, the M-ConvNext network was constructed, which was designed with the G-RFB module to acquire and fuse the feature information of each scale, and the GELU activation function enhanced the feature expression ability of the network to improve the accuracy of apple leaf disease image recognition. Finally, the experimental results showed that the CycleGAN-IA data enhancement method can play a good role in expanding the dataset, and it was verified on the commonly used network that the enhanced dataset can effectively improve the accuracy of apple leaf disease image recognition;through the ablation and comparison experiments, the recognition accuracy of M-ConvNex can be up to 99.18%, which was 0.41 percentage points more than the original ConvNext network, and 3.78 percentage points, 7.35 percentage points, 4.07 percentage points higher than that of ResNet50, MobileNetV3, and EfficientNetV2 networks, respectively, which provided an idea and laid a foundation for the subsequent recognition of crop diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李云紅,張蕾濤,李麗敏,蘇雪平,謝蓉蓉,史含馳.基于CycleGAN-IA方法和M-ConvNext網(wǎng)絡(luò)的蘋果葉片病害圖像識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(4):204-212. LI Yunhong, ZHANG Leitao, LI Limin, SU Xueping, XIE Rongrong, SHI Hanchi. Image Recognition of Apple Leaf Disease Based on CycleGAN-IA Method and M-ConvNext Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):204-212.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期: