亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

柑橘木虱YOLO v8-MC識(shí)別算法與蟲情遠(yuǎn)程監(jiān)測(cè)系統(tǒng)研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-Citrus)、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1400802-4、2020YFD1000101、2021YFD1400802-44)和柑橘全程機(jī)械化科研基地建設(shè)項(xiàng)目(農(nóng)計(jì)發(fā)[2017]19號(hào))


Research on Asian Citrus Psyllid YOLO v8-MC Recognition Algorithm and Insect Remote Monitoring System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    柑橘木虱是黃龍病的主要傳播媒介,其發(fā)生與活動(dòng)可對(duì)柑橘果園造成毀滅性后果。為實(shí)現(xiàn)木虱蟲情的高效監(jiān)測(cè),設(shè)計(jì)了一種集誘捕拍照、耗材更新、害蟲識(shí)別與結(jié)果展示于一體的智能監(jiān)測(cè)系統(tǒng)。設(shè)計(jì)了具備誘蟲膠帶自動(dòng)更新、蟲情圖像實(shí)時(shí)獲取功能的誘捕監(jiān)測(cè)裝置;應(yīng)用選點(diǎn)裁剪、Mosaic數(shù)據(jù)增強(qiáng)(Mosaic data augmentation,MDA)和CA(Coordinate attention)注意力機(jī)制,改進(jìn)了YOLO v8木虱識(shí)別模型;開發(fā)了Web和手機(jī)APP客戶端,可實(shí)現(xiàn)蟲情數(shù)據(jù)的可視化展示與遠(yuǎn)程控制。模型測(cè)試階段,改進(jìn)后的YOLO v8-MC召回率、F1值及精確率分別達(dá)到91.20%、91%、90.60%,較基準(zhǔn)模型分別提升5.47、5、4.64個(gè)百分點(diǎn);遷移試驗(yàn)中,模型召回率、F1值及精確率分別達(dá)到88.64%、87%、84.78%,且系統(tǒng)工作狀態(tài)良好,滿足野外使用需求。開發(fā)的智能監(jiān)測(cè)系統(tǒng)能有效實(shí)現(xiàn)果園木虱蟲情的遠(yuǎn)程監(jiān)測(cè),可為此類蟲害防治管理提供有效手段。

    Abstract:

    The Asian citrus psyllid (ACP) serves as the primary vector for Huanglongbing (HLB), a citrus tree disease with potentially devastating consequences for citrus orchards. In order to achieve efficient monitoring of ACP populations, an intelligent monitoring system capable of insect trapping, pest identification, and result visualization was developed. A monitoring device equipped with an automatic renewal mechanism for the insect trapping tape and real-time image capturing was designed. To improve the performance of the YOLO v8 model for ACP recognition, targeted cropping and Mosaic data augmentation techniques were employed to effectively expand the ACP dataset, addressing issues related to limited sample size and constrained positioning in the datasets. The application of a coordinate attention (CA) mechanism guided the model to comprehensively consider both channel and spatial information, thereby enhancing its ability to accurately locate the target psyllids. Additionally, the Web interface and mobile APP were developed to enable data visualization and remote control. During the model testing phase, the improved YOLO v8-MC achieved significant better performance than the baseline model, reaching 91.20%, 91%, and 90.60% in terms of recall rate, F1 score, and precision, respectively. In the field experiment, the model exhibited a recall rate of 88.64%, an F1 score of 87% and a precision of 84.78%, and the system operated effectively, meeting the requirements for field applications. In conclusion, the intelligent monitoring system developed enabled remote monitoring of ACP populations in orchards, providing an efficient mehtod for the management and control of such pest infestations.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李善軍,梁千月,余勇華,陳耀暉,付慧敏,張宏宇.柑橘木虱YOLO v8-MC識(shí)別算法與蟲情遠(yuǎn)程監(jiān)測(cè)系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):210-218. LI Shanjun, LIANG Qianyue, YU Yonghua, CHEN Yaohui, FU Huimin, ZHANG Hongyu. Research on Asian Citrus Psyllid YOLO v8-MC Recognition Algorithm and Insect Remote Monitoring System[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):210-218.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期: