亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLO v7-ST-ASFF的復雜果園環(huán)境下蘋果成熟度檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項目(CARS-06-14.5-A21)、中央引導地方科技發(fā)展資金項目(YDZJSX20231A042)、山西省谷子現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項目(2023CYJSTX04-04)、山西省重點研發(fā)重大項目(2022ZDYF119)和山西省基礎(chǔ)研究計劃項目(202203021212428)


Maturity Detection of Apple in Complex Orchard Environment Based on YOLO v7-ST-ASFF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對復雜果園環(huán)境下目標檢測算法參數(shù)量大、魯棒性差等問題,本文提出一種改進的YOLO v7網(wǎng)絡(luò)模型用于蘋果成熟度(未成熟、半成熟、成熟)檢測。以YOLO v7為基線網(wǎng)絡(luò),在特征提取結(jié)構(gòu)中引入窗口多頭自注意力機制(Swin transformer,ST),極大地降低網(wǎng)絡(luò)參數(shù)量與計算量;為提高模型對遠景圖像中小目標的檢測能力,在特征融合結(jié)構(gòu)中引入自適應空間特征融合(Adaptively spatial feature fusion,ASFF)模塊優(yōu)化Head部分,有效利用圖像的淺層特征和深層特征,加強特征尺度不變性;采用WIoU(Wise intersection over union)代替原始CIoU(Complete intersection over union)損失函數(shù),在提高檢測準確率的同時加快模型收斂速度。試驗結(jié)果表明,本文改進的YOLO v7-ST-ASFF模型在蘋果圖像測試集上的檢測速度和準確率均有顯著提高,不同成熟度檢測精確率、召回率和平均精度均值可達92.5%、84.2%和93.6%,均優(yōu)于Faster R-CNN、SSD、YOLO v3、YOLO v5、YOLO v7以及YOLO v8目標檢測模型;針對多目標、單目標、順光、逆光、遠景、近景以及套袋、未套袋蘋果目標的檢測效果都較好;本文網(wǎng)絡(luò)模型內(nèi)存占用量為53.4MB,模型平均檢測時間(Average detection time,ADT)為45.ms,均優(yōu)于其他目標檢測模型。改進的YOLO v7-ST-ASFF模型能夠滿足復雜果園環(huán)境下蘋果目標的檢測,可為果蔬機器人自動化采摘提供技術(shù)支撐。

    Abstract:

    In response to large number of parameters and poor robustness of object detection algorithms in complex orchard environment, an improved YOLO v7 network for apple maturity (immature, semimature, mature) detection was proposed. With YOLO v7 as the baseline network, a window multi-head self-attention mechanism (Swin transformer, ST) was adopted into the feature extraction structure to greatly reduce the parameters and computational complexity. In order to improve the ability of the model for detecting small targets in distant images, adaptively spatial feature fusion (ASFF) module was adopted into the feature fusion structure to optimize the Head part, effectively utilizing shallow and deep features and enhancing the performance of the feature scale invariance. Wise intersection over union (WIoU) was used to replace the original complete intersection over union (CIoU) loss function, thus accelerating the convergence speed and detection accuracy. The experimental results showed that the improved YOLO v7-ST-ASFF model had significantly improved the detection speed and accuracy on the test set of the apple images. The average detection precision, recall, mean average precision (mAP) for different maturity levels can reach 92.5%,84.2% and 93.6%, all of which were better than that of Faster R-CNN, SSD, YOLO v3, YOLO v5, YOLO v7 and YOLO v8 object detection models. The detection effects were good for multi, single, frontlight, backlight, distant and close targets, as well as bagged and unpacked targets. The size of the model was 53.4MB, and the ADT was 45ms, which was also better than that of other models. The improved YOLO v7-ST-ASFF model can meet the detection of apple targets in complex orchard environment, providing effective exploration for automated fruit and vegetable picking by robots.

    參考文獻
    相似文獻
    引證文獻
引用本文

苗榮慧,李港澳,黃宗寶,李志偉,杜慧玲.基于YOLO v7-ST-ASFF的復雜果園環(huán)境下蘋果成熟度檢測方法[J].農(nóng)業(yè)機械學報,2024,55(6):219-228. MIAO Ronghui, LI Gang’ao, HUANG Zongbao, LI Zhiwei, DU Huiling. Maturity Detection of Apple in Complex Orchard Environment Based on YOLO v7-ST-ASFF[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):219-228.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期: