亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于柔性應(yīng)變傳感器的數(shù)據(jù)手套手勢識別研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51305209)、江蘇省高等學(xué)校自然科學(xué)研究項(xiàng)目(18KJA4600050、21KJB460010)、江蘇省“六大人才高峰”高層次人才項(xiàng)目(GDZB-024)和機(jī)器人學(xué)國家重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(2018-O16)


Data Glove Gesture Recognition Based on Flexible Strain Sensors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)手勢識別系統(tǒng)識別率不高、響應(yīng)不穩(wěn)定等問題,設(shè)計(jì)了一個包括柔性傳感器、信號采集系統(tǒng)、手勢識別算法的柔性應(yīng)變傳感器數(shù)據(jù)手套手勢識別系統(tǒng)。該系統(tǒng)可準(zhǔn)確捕捉每根手指關(guān)節(jié)運(yùn)動信息,具有高自由度、低成本、高識別率等特點(diǎn)。在軟硅膠材料中摻雜特定配比的碳黑(CB)和碳納米管(CNTs),通過轉(zhuǎn)印技術(shù)設(shè)計(jì)出線性度好、靈敏度高的電阻式傳感器。實(shí)驗(yàn)結(jié)果表明,傳感器具有較好的靜態(tài)、動態(tài)響應(yīng)特性,并完成傳感器標(biāo)定;利用多個柔性傳感器制備數(shù)據(jù)手套并搭建信號采集系統(tǒng),進(jìn)一步提出融合BP神經(jīng)網(wǎng)絡(luò)和模板匹配技術(shù)的手勢識別方法,以提升相近手勢字母識別率,算法識別率為98.5%;針對不同人群開展手勢識別實(shí)驗(yàn),結(jié)果表明,該手勢識別系統(tǒng)準(zhǔn)確率達(dá)到92.8%,響應(yīng)時間約40ms,該數(shù)據(jù)手套具有較好的應(yīng)用潛力。

    Abstract:

    In response to the problems of low recognition rate and unstable response in traditional gesture recognition systems, a flexible strain sensor data glove gesture recognition system was developed, which included flexible sensors, signal acquisition systems, and gesture recognition algorithms. The system can accurately capture the motion information of each finger joint, and had the characteristics of high degree of freedom, low cost and high recognition rate. Carbon black (CB) and carbon nanotubes (CNTs) were doped into soft silica gel, and a resistive sensor with good linearity and high sensitivity was designed by extension technology. The experimental results showed that the sensor had good static and dynamic response characteristics, and the sensor calibration was completed. Using multiple flexible sensors to prepare data gloves and build a signal acquisition system, a gesture recognition method combining BP neural network and template matching technology was further proposed to improve the recognition rate of similar gestures, and the recognition rate of the algorithm was 98.5%. Gesture recognition experiments were carried out for different groups of people. The results showed that the accuracy of the gesture recognition system reached 92.8%, and the response time was about 40ms. The data glove had good application potential.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱銀龍,沈宏駿,吳杰,王旭,劉英.基于柔性應(yīng)變傳感器的數(shù)據(jù)手套手勢識別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):451-458. ZHU Yinlong, SHEN Hongjun, WU Jie, WANG Xu, LIU Ying. Data Glove Gesture Recognition Based on Flexible Strain Sensors[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):451-458.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期: