亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于FPGA加速的Mask R-CNN稻瘟病高通量自適應(yīng)識(shí)別模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃青年科學(xué)家項(xiàng)目(2022YFD2000200)和國(guó)家自然科學(xué)基金(面上)項(xiàng)目(32171895)


Research on High-througput Adaptive Recognition Mask R-CNN Model for Rice Blast Disease Based on FPGA Acceleration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)基于圖像的稻瘟病現(xiàn)場(chǎng)檢測(cè)技術(shù)依賴先驗(yàn)知識(shí)且受制于算力與田間網(wǎng)絡(luò)狀況,無(wú)法實(shí)現(xiàn)自適應(yīng)實(shí)時(shí)檢測(cè)的問(wèn)題,提出一種可利用現(xiàn)場(chǎng)可編程門(mén)陣列(Field programmable gate array, FPGA)加速的Mask R-CNN(Mask region-based convolutional neural network)稻瘟病高通量自適應(yīng)快速識(shí)別模型。首先將骨干網(wǎng)絡(luò)改進(jìn)為MobileNetV2,利用其倒殘差模塊降低計(jì)算量,提高模型并行處理能力;隨后增加用于稻瘟病多尺度特征融合的特征金字塔網(wǎng)絡(luò)模塊,使模型具備多尺度自適應(yīng)處理能力;最后由全卷積網(wǎng)絡(luò)(Fully convolutional network,FCN)分支輸出稻瘟病病斑的實(shí)例分割,同時(shí)使用交叉熵?fù)p失函數(shù)完成稻瘟病的定位與分類。稻瘟病實(shí)測(cè)數(shù)據(jù)集對(duì)模型的驗(yàn)證結(jié)果表明:當(dāng)輸入為全高清圖像時(shí),模型平均推理時(shí)間減少至85ms,相較GPU服務(wù)器、同級(jí)別GPU邊緣計(jì)算平臺(tái),速度分別提高86.2%、63.0%。在交并比為0.6時(shí),準(zhǔn)確率可達(dá)98.0%,病斑捕獲能力平均提升21.2%。提出的Mask R-CNN自適應(yīng)快速識(shí)別模型能夠在田間惡劣網(wǎng)絡(luò)狀況下實(shí)現(xiàn)稻瘟病的快速現(xiàn)場(chǎng)檢測(cè),具有更好的抗噪能力和魯棒性能,為水稻病害實(shí)時(shí)檢測(cè)、察打一體提供了高效實(shí)時(shí)的片上系統(tǒng)方案。

    Abstract:

    Image-based on-site detection technology for rice blast relies on prior knowledge which is affected by computational power and field network conditions, rendering adaptive real-time detection impossible. To tackle these challenges, a Mask R-CNN (Mask region-based convolutional neural network) model for rapid, high-throughput, and adaptive identification of rice blast was proposed. This model can be accelerated by using field programmable gate array (FPGA). Firstly, the backbone network was replaced with MobileNetV2, leveraging its inverted residual module to decrease computations and enhance the model’s parallel processing capabilities. Following that, a feature pyramid network module was incorporated to facilitate multi-scale feature fusion for rice blast, enabling the model to possess multi-scale adaptive processing abilities. Finally, the fully convolutional network(FCN) branch outputed the instance segmentation of rice blast lesions, utilizing the Softmax function to accurately localize and classify rice blast diseases. The validation results of the model using test datasets for rice blast disease demonstrated significant capabilities: when the input was a full HD image, the average inference time of the model was reduced to 85ms, which was 86.2% and 63.0% faster than the GPU server and the same level GPU edge computing platform, respectively. When the intersection over union ratio was 0.6, the accuracy can reach 98.0%, and the disease spot capture ability was improved by 21.2% on average. The Mask R-CNN adaptive fast identification model proposedcan realize the rapid field detection of rice blast disease under severe network conditions, and had better anti-noise ability and robust performance, which provided an efficient real-time system-on-chip scheme for real-time detection, inspection and mitigation of rice disease.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊寧,程巍,張釗源,方嘯,毛罕平.基于FPGA加速的Mask R-CNN稻瘟病高通量自適應(yīng)識(shí)別模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):298-304,314. YANG Ning, CHENG Wei, ZHANG Zhaoyuan, FANG Xiao, MAO Hanping. Research on High-througput Adaptive Recognition Mask R-CNN Model for Rice Blast Disease Based on FPGA Acceleration[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):298-304,314.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期: