亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)Mask R-CNN的籠養(yǎng)死鴨識(shí)別方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省現(xiàn)代農(nóng)業(yè)重大核心技術(shù)創(chuàng)新項(xiàng)目(CX(22)1008)


Dead Duck Recognition Method Based on Improved Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)規(guī)?;\養(yǎng)肉鴨舍內(nèi)死鴨識(shí)別采用人工作業(yè)方式時(shí),存在作業(yè)效率低、勞動(dòng)強(qiáng)度大、養(yǎng)殖成本高等問題,以層疊式籠養(yǎng)肉鴨為研究對(duì)象,提出了一種基于深度學(xué)習(xí)的籠養(yǎng)死鴨識(shí)別方法。為了采集數(shù)據(jù),首先面向立體層疊式養(yǎng)殖環(huán)境設(shè)計(jì)了一款適用于肉鴨舍的自主巡檢裝備。針對(duì)籠養(yǎng)肉鴨舍鐵絲網(wǎng)遮擋嚴(yán)重的問題,基于機(jī)器視覺對(duì)籠網(wǎng)進(jìn)行修復(fù),基于OpenCV對(duì)圖像進(jìn)行增強(qiáng)處理。構(gòu)建了一種基于Mask R-CNN的死鴨識(shí)別模型,采用Swin Transformer對(duì)模型進(jìn)行優(yōu)化,解決了Mask R-CNN網(wǎng)絡(luò)缺乏整合全局信息能力的問題。對(duì)比分析了SOLO v2、Mask R-CNN和Mask R-CNN+Swin Transformer模型識(shí)別籠內(nèi)死鴨準(zhǔn)確率。實(shí)驗(yàn)結(jié)果表明,在平均精度均值為90%的條件下,Mask R-CNN+Swin Transformer模型對(duì)籠內(nèi)死鴨總體識(shí)別準(zhǔn)確率可達(dá)95.8%,在自主巡檢裝備上的檢測(cè)效果優(yōu)于其他主流的目標(biāo)檢測(cè)算法。

    Abstract:

    Traditional manual methods for identifying dead ducks within large-scale stacked cage poultry houses have proven to be inefficient, labor-intensive, and costly. Focusing on stacked cage housing for meat ducks, a deep learning-based method was proposed for dead duck recognition. To collect the necessary dataset, a specialized autonomous inspection system tailored for meat duck housing within three-dimensional stacked environments was initially designed. To address the issue of severe wire mesh obstruction within the cage housing, machine vision techniques were employed to repair the cage mesh and enhance images by using OpenCV. A dead duck recognition model was constructed based on Mask R-CNN, and further optimized with the Swin Transformer to overcome the limitation of Mask R-CNN’s global information integration. The accuracy of dead duck recognition among the SOLO v2, Mask R-CNN, and Mask R-CNN+Swin Transformer models was compared and analyzed. Experimental results demonstrated that under the condition of mAP value of 90%, the Mask R-CNN+Swin Transformer model achieved an overall dead duck recognition rate of 95.8% within the duck cages, outperforming other mainstream object detection algorithms on the autonomous inspection equipment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

柏宗春,呂胤春,朱一星,馬肄恒,段恩澤.基于改進(jìn)Mask R-CNN的籠養(yǎng)死鴨識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):305-314. BAI Zongchun, Lü Yinchun, ZHU Yixing, MA Yiheng, DUAN Enze. Dead Duck Recognition Method Based on Improved Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):305-314.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期: