亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v8s的羊只行為識(shí)別方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(22327403D)


Sheep Behavior Recognition Method Based on Improved YOLO v8s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    羊只站立、行走、采食等日常行為與其健康狀況密切相關(guān),高效、準(zhǔn)確的羊只行為識(shí)別有助于疾病檢測(cè),對(duì)實(shí)現(xiàn)羊只健康預(yù)警具有重要意義。針對(duì)目前羊只多行為識(shí)別檢測(cè)大多基于傳感器等接觸式設(shè)備,羊只活動(dòng)受限,行為具有局限性,且群體養(yǎng)殖環(huán)境下,羊只行為多樣、場(chǎng)景復(fù)雜、存在遮擋等造成的行為識(shí)別精度低等問(wèn)題,提出了一種基于改進(jìn)YOLO v8s的羊只行為識(shí)別方法。首先,引入SPPCSPC空間金字塔結(jié)構(gòu)增強(qiáng)了模型的特征提取能力,提升了模型的檢測(cè)精度。其次,新增P2小目標(biāo)檢測(cè)層,增強(qiáng)了模型對(duì)小目標(biāo)的識(shí)別和定位能力。最后,引入多尺度輕量化模塊PConv和EMSConv,在保證模型識(shí)別效果的同時(shí),降低了模型參數(shù)量和計(jì)算量,實(shí)現(xiàn)了模型輕量化。實(shí)驗(yàn)結(jié)果表明,改進(jìn)YOLO v8s模型對(duì)羊只站立、行走、采食、飲水、趴臥行為平均識(shí)別精度分別為84.62%、92.58%、87.54%、98.13%和87.18%,整體平均識(shí)別精度為90.01%。與Faster R-CNN、YOLO v5s、YOLO v7、YOLO v8s模型相比,平均識(shí)別精度分別提高12.03、3.95、1.46、2.19個(gè)百分點(diǎn)。研究成果可為羊只健康管理和疾病預(yù)警提供技術(shù)支撐。

    Abstract:

    The daily behaviors of sheep, such as standing, walking, eating, drinking and sitting, are closely related to their health. Efficient and accurate recognition of sheep behaviors is crucial for disease and health detection. To address the current problem of the limited behavior of sheep caused by contact devices such as sensors and lower accuracy caused by diverse behaviors, complex scenarios, and occlusions in group farming, the method for sheep behavior recognition based on improved YOLO v8s was proposed. Firstly, the SPPCSPC was introduced to improve the feature extraction ability and the detection accuracy of the model. Secondly, the P2 detection was used to enhance ability of the model to identify and locate the small targets. Finally, multi-scale lightweight modules PConv and EMSConv were introduced and the number of parameters and calculation of the model were reduced and the lightweight was realized while ensuring the recognition of effects. The results showed that the average accuracy of the model proposed for standing, walking, eating, drinking, and sitting was 84.62%, 92.58%, 87.54%, 98.13% and 87.18%, respectively. And the overall average accuracy was 90.01%. Compared with Faster R-CNN, YOLO v5s, YOLO v7, and YOLO v8s model, the average accuracy was 12.03 percentage points, 3.95 percentage points, 1.46 percentage points, and 2.19 percentage points higher, respectively. The results can provide technical support for sheep health management and disease warning.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王旺,王福順,張偉進(jìn),劉紅達(dá),王晨,王超,何振學(xué).基于改進(jìn)YOLO v8s的羊只行為識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):325-335,344. WANG Wang, WANG Fushun, ZHANG Weijin, LIU Hongda, WANG Chen, WANG Chao, HE Zhenxue. Sheep Behavior Recognition Method Based on Improved YOLO v8s[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):325-335,344.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期: