亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)AdvSemiSeg的半監(jiān)督遙感影像作物制圖方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1900802)、國(guó)家自然科學(xué)基金項(xiàng)目(51979233)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2452023078)


Semi-supervised Network for Remote Sensing Crop Mapping Based on Improved AdvSemiSeg
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    作物精準(zhǔn)遙感制圖對(duì)于農(nóng)業(yè)資源調(diào)查與管理具有重要意義。深度學(xué)習(xí)為實(shí)現(xiàn)精準(zhǔn)高效作物制圖提供了技術(shù)支持。為了緩解深度學(xué)習(xí)對(duì)標(biāo)記樣本的依賴,本文提出了一種改進(jìn)AdvSemiSeg的半監(jiān)督遙感影像作物制圖方法。所提方法引入STMF-DeepLabv3+作為對(duì)抗學(xué)習(xí)中的生成網(wǎng)絡(luò),通過(guò)Swin Transformer(ST)和多尺度特征融合(Multi-scale fusion,MF)模塊提高生成網(wǎng)絡(luò)特征編碼能力和語(yǔ)義表達(dá)能力,改善遙感影像作物分割效果;此外,在判別網(wǎng)絡(luò)中引入通道注意力(Efficient channel attention,ECA)模塊,對(duì)不同通道特征圖的表征信息進(jìn)行自適應(yīng)學(xué)習(xí),增強(qiáng)判別網(wǎng)絡(luò)對(duì)不同通道特征的感知能力。模型訓(xùn)練過(guò)程中,判別網(wǎng)絡(luò)為生成網(wǎng)絡(luò)提供高質(zhì)量的偽標(biāo)簽和對(duì)抗損失,有效提高生成網(wǎng)絡(luò)的泛化能力。采用所提方法與幾種先進(jìn)的半監(jiān)督語(yǔ)義分割方法對(duì)內(nèi)蒙古河套灌區(qū)遙感影像種植信息進(jìn)行提取,本文方法性能最優(yōu)。

    Abstract:

    Crop precision remote sensing mapping holds significant importance for agricultural resource surveys and management. Deep learning provides technical support for achieving accurate and efficient crop mapping.To alleviate the dependency of deep learning on labeled samples, an improved semisupervised remote sensing crop mapping method was proposed based on AdvSemiSeg. The proposed method introduced STMF-DeepLabv3+ as the generator in the adversarial learning framework, enhancing the feature encoding and semantic expression capabilities of the generator through Swin Transformer (ST) and multi-scale fusion (MF) modules, thus improving the segmentation performance of remote sensing crop images. Additionally, the efficient channel attention (ECA) module was introduced after each convolutional layer of the discriminator to adaptively learn the representation information of different channel feature maps, enhancing the discriminator’s perception of different channel features. During the training process, the discriminator provided high-quality pseudo-labels and adversarial losses to the generator, effectively improving the generalization ability of the generator. Compared with several advanced semi-supervised semantic segmentation methods, the proposed method achieved optimal performance in extracting planting information from remote sensing images in the Hetao Irrigation District of Inner Mongolia.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

翟雪東,韓文霆,馬偉童,崔欣,李廣,黃沈錦.基于改進(jìn)AdvSemiSeg的半監(jiān)督遙感影像作物制圖方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(8):196-204. ZHAI Xuedong, HAN Wenting, MA Weitong, CUI Xin, LI Guang, HUANG Shenjin. Semi-supervised Network for Remote Sensing Crop Mapping Based on Improved AdvSemiSeg[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(8):196-204.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-08-10
  • 出版日期: