亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v8n-seg的羊只實(shí)例分割方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(22327403D)和河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系羊產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)專(zhuān)項(xiàng)資金項(xiàng)目(HBCT2024250204)


Sheep Instance Segmentation Method Based on Improved YOLO v8n-seg
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    羊只實(shí)例分割是實(shí)現(xiàn)羊只識(shí)別和跟蹤、行為分析和管理、疾病監(jiān)測(cè)等任務(wù)的重要前提。針對(duì)規(guī)模化羊場(chǎng)復(fù)雜養(yǎng)殖環(huán)境中,羊只個(gè)體存在遮擋、光線昏暗、個(gè)體顏色與背景相似等情況所導(dǎo)致的羊只實(shí)例錯(cuò)檢、漏檢問(wèn)題,提出了一種基于改進(jìn)YOLO v8n-seg的羊只實(shí)例分割方法。以YOLO v8n-seg網(wǎng)絡(luò)作為基礎(chǔ)模型進(jìn)行羊只個(gè)體分割任務(wù),首先,引入Large separable kernel attention模塊以增強(qiáng)模型對(duì)實(shí)例重要特征信息的捕捉能力,提高特征的代表性及模型的魯棒性;其次,采用超實(shí)時(shí)語(yǔ)義分割模型DWR-Seg中的Dilation-wise residual模塊替換C2f中的Bottleneck模塊,以優(yōu)化模型對(duì)網(wǎng)絡(luò)高層特征的提取能力,擴(kuò)展模型感受野,增強(qiáng)上下文語(yǔ)義之間的聯(lián)系,生成帶有豐富特征信息的新特征圖;最后,引用Dilated reparam block模塊對(duì)C2f進(jìn)行二次改進(jìn),多次融合從網(wǎng)絡(luò)高層提取到的特征信息,增強(qiáng)模型對(duì)特征的理解能力。試驗(yàn)結(jié)果表明,改進(jìn)后的YOLO v8n-LDD-seg對(duì)羊只實(shí)例的平均分割精度mAP50達(dá)到92.08%,mAP50:90達(dá)到66.54%,相較于YOLO v8n-seg,分別提升3.06、3.96個(gè)百分點(diǎn)。YOLO v8n-LDD-seg有效提高了羊只個(gè)體檢測(cè)精度,提升了羊只實(shí)例分割效果,為復(fù)雜養(yǎng)殖環(huán)境下羊只實(shí)例檢測(cè)和分割提供了技術(shù)支持。

    Abstract:

    Sheep instance segmentation is an important prerequisite for sheep identification and tracking, behavior analysis and management, and disease monitoring. Aiming at the problem of false detection and missed detection of sheep instance detection caused by the occlusion of sheep individuals, dim light, and the similarity of individual color and background in the complex breeding environment of large-scale sheep farms, a sheep instance segmentation method based on improved YOLO v8n-seg was proposed. The YOLO v8n-seg network was used as the basic model for the individual sheep segmentation task. Firstly, the large separable kernel attention module was introduced to enhance the ability of the model to capture important feature information of the instance, which improved the representativeness of the features and the robustness of the model. Secondly, the bottleneck module in C2f was replaced by the expansion-wise residual module in DWR-Seg, a hyperreal-time semantic segmentation model, to optimize the ability of the model to extract high-level network features, expanding the receptive field of the model, and enhanced the relationship between context semantics. Generate new feature maps with rich feature information. Finally, the dilated reparam block module was used to further improve C2f, and the feature information extracted from the high level of the network was fused several times to enhance the understanding ability of the model. The experimental results showed that the average segmentation accuracy of the improved YOLO v8n-LDD-seg for sheep cases reached 92.08% at mAP50 and 66.54% at mAP50:90. Compared with YOLO v8n-seg, mAP50 and mAP50:95 were improved by 3.06 percentage points and 3.96 percentage points, respectively. YOLO v8n-LDD-seg effectively improved the detection accuracy of individual sheep, improved the segmentation effect of sheep instances, and provided technical support for the detection and segmentation of sheep instances in complex breeding environments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王福順,王旺,孫小華,王超,袁萬(wàn)哲.基于改進(jìn)YOLO v8n-seg的羊只實(shí)例分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(8):322-332. WANG Fushun, WANG Wang, SUN Xiaohua, WANG Chao, YUAN Wanzhe. Sheep Instance Segmentation Method Based on Improved YOLO v8n-seg[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(8):322-332.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-08-10
  • 出版日期: